Evidential Network-Based Multimodal Fusion for Fall Detection

نویسندگان

  • Paulo Armando Cavalcante Aguilar
  • Jérôme Boudy
  • Dan Istrate
  • Hamid Medjahed
  • Bernadette Dorizzi
  • João Cesar M. Mota
  • Jean-Louis Baldinger
  • Toufik Guettari
  • Imad Belfeki
چکیده

The multi-sensor fusion can provide more accurate and reliable information compared to information from each sensor separately taken. Moreover, the data from multiple heterogeneous sensors present in the medical surveillance systems have different degrees of uncertainty. Among multisensor data fusion techniques, Bayesian methods and evidence theories such as Dempster-Shafer Theory (DST), are commonly used to handle the degree of uncertainty in the fusion processes. Based on a graphic representation of the DST called evidential networks, we propose a structure of heterogeneous multi-sensor fusion for falls detection. The proposed Evidential Network (EN) can handle the uncertainty present in a mobile and a fixed sensor-based remote monitoring systems (fall detection) by fusing them and therefore increasing the fall detection sensitivity compared to the a separated system alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Multi-sensor Fusion Based on an Evidential Network for Fall Detection

The multi-sensor fusion can provide more accurate and reliable information compared to information from each sensor separately taken. Moreover, the data from multiple heterogeneous sensors present in the medical surveillance systems have different degrees of uncertainty. Among multi-sensor data fusion techniques, Bayesian methods and evidence theories such as Dempster-Shafer Theory (DST), are c...

متن کامل

An Evidential Filter for Indoor Navigation of a Mobile Robot in Dynamic Environment

Robots are destined to live with humans and perform tasks for them. In order to do that, an adapted representation of the world including human detection is required. Evidential grids enable the robot to handle partial information and ignorance, which can be useful in various situations. This paper deals with an audiovisual perception scheme of a robot in indoor environment (apartment, house..)...

متن کامل

Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets

The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...

متن کامل

Concept-based evidential reasoning for multimodal fusion in human-computer interaction

Fusion of information from multiple modalities in Human Computer Interfaces (HCI) has gained a lot of attention in recent years, and has far reaching implications in many areas of human-machine interaction. However, a major limitation of current HCI fusion systems is that the fusion process tends to ignore the semantic nature of modalities, which may reinforce, complement or contradict each oth...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJEHMC

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013